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Abstract: Accurate estimation of software development effort is essential for successful project planning, 

resource allocation, and cost management, yet it poses significant challenges due to the multifaceted and non-

linear relationships among project attributes. Conventional approaches, such as expert judgment, analogy-

based estimation, and parametric models like the Constructive Cost Model (COCOMO), often suffer from 

subjective biases and limited adaptability, leading to unreliable predictions. This study introduces a novel 

Random Forest-based stacked ensemble model to enhance the precision of software effort estimation. The 

proposed framework integrates diverse machine learning algorithms, including Random Forest, Support 

Vector Machines, Gradient Boosting Machines, and Decision Trees, leveraging their complementary strengths. 

A Random Forest meta-learner aggregates the predictions of these base learners, improving robustness and 

generalization across varied project contexts. The model was rigorously evaluated on seven benchmark 

datasets—Albrecht, China, Desharnais, Kemerer, Maxwell, Kitchenham, and Cocomo81—demonstrating 

superior performance over traditional methods and standalone machine learning models. It achieves 

significantly lower Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and higher R² scores, 

indicating better predictive accuracy and explanatory power. By delivering reliable, data-driven effort 

estimates, this approach supports enhanced project scheduling, budgeting, and resource optimization, offering 

a scalable and adaptable solution for addressing the complexities of modern software development projects. 
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1. INTRODUCTION 

Software development effort estimation is a cornerstone of effective project management, enabling accurate 

scheduling, budgeting, and resource allocation. As software systems grow in complexity and scale, the need for 

reliable effort estimates has become increasingly critical. Effort estimation involves predicting the human resources, 

typically measured in person-hours or person-months, required to complete a software project. Inaccurate estimates 

can lead to significant cost overruns, delayed deliveries, and compromised project quality, with studies reporting that 

up to 60% of software projects exceed their planned budgets or schedules due to poor estimation [1], [2]. These 

challenges underscore the importance of developing robust estimation techniques that can adapt to the dynamic and 

multifaceted nature of software development. 

Traditional effort estimation methods, such as expert judgment, analogy-based approaches, and parametric models 

like the Constructive Cost Model (COCOMO), have been widely used but often yield inconsistent results. Expert 

judgment relies heavily on subjective experience, which can introduce biases and fail to scale across diverse project 

types [12]. Analogy-based methods, which estimate effort by comparing a new project to similar past projects, struggle 

with the availability of relevant historical data and the complexity of matching project attributes [17]. Parametric 

models like COCOMO, introduced by Boehm [1], use mathematical formulas based on project size (e.g., lines of 

code) and other factors, but their assumptions about linear relationships often fail to capture the non-linear and intricate 

interactions among project attributes [4]. These limitations have driven researchers to explore data-driven approaches, 

particularly machine learning, to enhance estimation accuracy. 

Machine learning techniques have shown significant promise in addressing the shortcomings of traditional 

methods by leveraging historical project data to model complex relationships. Algorithms such as Decision Trees, 

Support Vector Machines (SVM), and Neural Networks have been applied to effort estimation, offering improved 

predictive performance over parametric models [21], [14]. However, single-model approaches often struggle with 

generalization across diverse datasets, as they may overfit to specific project characteristics or fail to capture 

complementary patterns [15]. Ensemble methods, which combine multiple models to improve robustness and 
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accuracy, have emerged as a powerful solution. Random Forest, proposed by Breiman [3], is particularly effective 

due to its ability to reduce variance through bagging and handle high-dimensional data [20]. Recent studies have 

further advanced ensemble techniques by introducing stacked ensembles, where a meta-learner integrates predictions 

from multiple base learners to achieve superior performance [11], [34]. 

Despite these advancements, challenges persist in achieving consistent accuracy across varied software 

project datasets, such as Albrecht, China, Desharnais, Kemerer, Maxwell, Kitchenham, and Cocomo81, which differ 

in size, complexity, and attributes. Factors such as project size (e.g., lines of code or function points), team experience, 

development methodology, and environmental constraints introduce significant variability, necessitating models that 

can adapt to heterogeneous data [28]. Moreover, the evaluation of estimation models requires rigorous metrics, such 

as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R-squared (R²), to ensure reliability and 

comparability [5]. Recent research has highlighted the potential of stacked ensemble models to outperform traditional 

and single-model approaches, but their application to software effort estimation remains underexplored [33], [49]. 

This study proposes a novel Random Forest-based stacked ensemble model to address these challenges and 

enhance software effort estimation accuracy. The proposed framework integrates four base learners—Random Forest, 

Support Vector Machines, Gradient Boosting Machines, and Decision Trees—leveraging their complementary 

strengths to capture diverse patterns in project data. A Random Forest meta-learner aggregates the base learners’ 

predictions, improving generalization and reducing prediction errors. The model is evaluated on seven benchmark 

datasets, comparing its performance against traditional methods (e.g., COCOMO) and standalone machine learning 

models using MAE, RMSE, and R². By providing reliable, data-driven effort estimates, this approach aims to support 

better project planning, reduce cost overruns, and optimize resource allocation in modern software development. 

The significance of this research lies in its potential to bridge the gap between theoretical advancements in 

machine learning and practical applications in software project management. By addressing the limitations of existing 

methods and demonstrating superior performance across diverse datasets, the proposed model offers a scalable and 

adaptable solution for industry practitioners and researchers. The study also contributes to the growing body of 

literature on ensemble-based effort estimation, providing insights into the design and evaluation of stacked models 

[45], [46]. 

The remainder of this paper is organized as follows: 

• Section 2: Literature Survey reviews existing effort estimation techniques, focusing on traditional, machine 

learning, and ensemble-based approaches, and identifies research gaps. 

• Section 3: Datasets describes the seven benchmark datasets used for evaluation, detailing their attributes and 

relevance. 

• Section 4: Proposed Methodology outlines the Random Forest-based stacked ensemble model, including base 

learners, meta-learner, and implementation details. 

• Section 5: System Architecture presents the system’s modular design, covering data preprocessing, training, 

integration, and evaluation. 

• Section 6: Results and Discussion analyzes the model’s performance using MAE, RMSE, and R², comparing 

it with baseline methods. 

• Section 7: Conclusion summarizes key findings, contributions, and future research directions. 

 

2. LITERATURE SURVEY 

Software effort estimation has been a critical research area in software engineering for decades, driven by 

the need to predict the resources required for project completion accurately. The complexity and variability of software 

projects, characterized by attributes such as project size, team experience, and development methodology, pose 

significant challenges to achieving reliable estimates. This section reviews the evolution of effort estimation 

techniques, categorized into traditional methods, machine learning-based approaches, and ensemble methods, with a 

focus on their strengths, limitations, and relevance to the proposed Random Forest-based stacked ensemble model. 

By analyzing key studies, we identify research gaps that motivate the current work. 

 

2.1 Traditional Effort Estimation Methods 

Traditional effort estimation methods include expert judgment, analogy-based approaches, and parametric 

models, which have been foundational in software project management. Expert judgment relies on the experience of 

domain experts to estimate effort based on project requirements and historical knowledge. However, its subjective 

nature often leads to biases and inconsistent results, particularly for novel or complex projects [12]. Jørgensen and 

Shepperd’s systematic review highlighted that expert judgment’s accuracy varies widely, with errors exceeding 30% 

in many cases [2]. 
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Analogy-based methods estimate effort by comparing a new project to similar past projects, using metrics like lines 

of code (LOC) or function points (FP). Shepperd and Schofield demonstrated that analogy-based estimation can 

outperform expert judgment when sufficient historical data is available [12]. However, the approach struggles with 

data scarcity and the challenge of identifying truly comparable projects, as project attributes are often heterogeneous 

[17]. Idri et al.’s systematic mapping revealed that analogy-based methods achieve moderate accuracy (Mean Absolute 

Error, MAE, around 0.3–0.5) but are sensitive to dataset quality [17]. 

Parametric models, such as the Constructive Cost Model (COCOMO) introduced by Boehm, use 

mathematical formulas to estimate effort based on project size and adjustment factors like complexity and team 

capability [1]. COCOMO and its variants (e.g., COCOMO II) have been widely adopted, but their reliance on linear 

assumptions limits their ability to capture non-linear relationships in modern software projects [4]. Chulani et al. 

improved COCOMO using Bayesian analysis, achieving better calibration, but the model still underperforms on 

diverse datasets [4]. These limitations have prompted a shift toward data-driven approaches that can model complex 

interactions more effectively. 

 

2.2 Machine Learning-Based Effort Estimation 

The advent of machine learning has transformed software effort estimation by enabling models to learn 

patterns from historical project data. Early studies applied regression-based techniques, such as linear regression and 

log-linear regression, to predict effort. Fedotova et al. demonstrated that multiple linear regression can achieve 

reasonable accuracy (RMSE ~0.4) for small datasets but struggles with non-linear relationships [37]. To address this, 

researchers explored more sophisticated algorithms, including Decision Trees, Support Vector Machines (SVM), and 

Neural Networks. 

Decision Trees offer interpretable models by splitting data based on feature thresholds, making them suitable for 

structured datasets like Albrecht and Desharnais. However, they are prone to overfitting, as noted by Hudail et al. 

[25]. SVM, with its ability to model non-linear relationships using kernels (e.g., radial basis function), has shown 

promise in effort estimation. Corazza et al. applied SVM to web development projects, reporting an MAE of 0.25 on 

small datasets [27]. Neural Networks, particularly multilayer perceptrons, have been explored for their flexibility in 

capturing complex patterns. Nassif et al. compared Neural Networks to regression models, finding improved accuracy 

(R² ~0.8) but noted their sensitivity to hyperparameter tuning and data quality [21]. 

Despite these advancements, single-model approaches often fail to generalize across diverse datasets due to 

overfitting or bias toward specific project types. Wen et al.’s systematic review emphasized that machine learning 

models achieve MAE ranging from 0.2 to 0.5 but vary significantly across datasets like Cocomo81 and Maxwell [14]. 

This variability has led researchers to explore ensemble methods that combine multiple models to enhance robustness. 

 

2.3 Ensemble-Based Effort Estimation 

Ensemble methods, which aggregate predictions from multiple models, have gained traction for their ability 

to reduce variance and improve generalization. Random Forest, proposed by Breiman, is a popular ensemble technique 

that uses bagging to combine decision trees, making it robust to high-dimensional and noisy data [3]. Abdelali et al. 

investigated Random Forest for effort estimation, reporting an MAE of 0.18 on the China dataset, outperforming SVM 

and Neural Networks [20]. Satapathy et al. applied Random Forest to early-stage estimation using use case points, 

achieving an R² of 0.85 [38]. 

Beyond Random Forest, other ensemble techniques, such as Gradient Boosting Machines (GBM) and AdaBoost, have 

been explored. Chen and Li used GBM for effort estimation, demonstrating superior performance (RMSE ~0.3) on 

the Kemerer dataset due to its ability to correct prediction errors sequentially [5]. Kocaguneli et al. highlighted the 

value of heterogeneous ensembles, combining models like SVM and Decision Trees, to capture complementary 

patterns, achieving MAE reductions of up to 20% compared to single models [15]. 

Stacked ensembles, where a meta-learner integrates predictions from multiple base learners, represent the 

state-of-the-art in ensemble methods. Priya Varshini et al. proposed a Random Forest-based stacked ensemble, similar 

to the current study, reporting an MAE of 0.15 and R² of 0.9 across multiple datasets [11]. Hidmi and Sakar 

demonstrated that stacked ensembles outperform homogeneous ensembles by leveraging diverse model strengths [33]. 

Idri and Abnane’s work on heterogeneous ensembles further confirmed their superiority, with R² values exceeding 

0.9 on datasets like Maxwell [49]. However, these studies noted challenges in selecting optimal base learners and 

meta-learners, as well as the computational complexity of stacking. 

 

2.4 Research Gaps and Motivation 

Despite significant progress, several gaps remain in software effort estimation research. First, traditional 

methods like COCOMO and analogy-based approaches are limited by their inability to handle non-linear relationships 
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and heterogeneous datasets [4], [17]. Second, while machine learning models like SVM and Neural Networks improve 

accuracy, they often lack robustness across diverse datasets due to overfitting or model-specific biases [14], [21]. 

Third, although ensemble methods like Random Forest and GBM show promise, their performance varies by dataset, 

and few studies explore stacked ensembles for effort estimation [20], [38]. Finally, the application of stacked 

ensembles to benchmark datasets like Albrecht, China, and Cocomo81 is underexplored, with limited comparisons 

against traditional and single-model approaches using standardized metrics (MAE, RMSE, R²) [33], [49]. 

Recent studies have called for advanced ensemble models that combine diverse base learners and meta-

learners to achieve consistent accuracy across varied project types [45], [46]. The proposed Random Forest-based 

stacked ensemble model addresses these gaps by integrating four base learners—Random Forest, SVM, GBM, and 

Decision Trees—with a Random Forest meta-learner. This approach leverages the strengths of each model to capture 

complex patterns, aiming to outperform existing methods on seven benchmark datasets. By providing a 

comprehensive evaluation and practical insights, this study contributes to both theoretical advancements and industry 

applications in software project management. 

 

3. DATASETS 

The evaluation of the Random Forest-based stacked ensemble model for software effort estimation relies on 

seven benchmark datasets: Albrecht, China, Desharnais, Kemerer, Maxwell, Kitchenham, and Cocomo81. These 

datasets, sourced from public repositories like PROMISE and original studies, provide diverse software project 

characteristics, enabling robust testing of the model’s generalization across varied contexts. This section outlines the 

datasets, their attributes, and their relevance to the study, ensuring a clear understanding of the data used for model 

evaluation. 

 

3.1 Overview of Datasets 

The seven datasets were selected for their widespread use in software effort estimation research and their 

diverse attributes, which include project size (e.g., lines of code or function points), development effort (measured in 

person-hours or person-months), team experience, project complexity, and development methodology. Sourced from 

repositories like PROMISE and foundational studies, these datasets cover a range of project types (e.g., commercial, 

financial, military) and scales (15 to 499 projects). Their attributes align with the model’s input requirements, 

supporting feature engineering and preprocessing steps like normalization and imputation, as described in Section 4. 

The datasets’ diversity tests the model’s ability to handle heterogeneous data, noisy attributes, and varying project 

contexts, ensuring comprehensive evaluation across small, mid-sized, and large-scale software projects. 

 

3.2 Dataset Characteristics 

The datasets vary in size, measurement units, and project characteristics, each contributing unique strengths 

and challenges to the model’s evaluation: 

Albrecht: Contains 24 IBM projects from 1979, focusing on commercial data processing. Attributes include 

function points (50–600) and effort (1,200–23,000 person-hours). Its simplicity and focus on function points make 

it ideal for testing early-stage estimation, but its small size and homogeneity limit modern applicability. 

China: Includes 499 projects from Chinese companies, with attributes like lines of code, function points, team 

size, and effort (2,000–100,000 person-hours). Its diversity (e.g., embedded, web-based systems) and large size 

test model robustness on high-dimensional, noisy data. 

Desharnais: Comprises 81 Canadian projects from 1989, primarily information systems. Attributes include 

adjusted function points, team experience, and effort (500–12,000 person-hours). Detailed team and 

environmental factors enhance its value, but 10% missing data (e.g., team experience) requires imputation. 

Kemerer: Features 15 commercial/industrial projects from 1987, with lines of code (5,000–50,000), effort (10–

200 person-months), and programming language. Its small size and LOC focus challenge model adaptability, but 

it ensures compatibility with early studies. 

Maxwell: Includes 63 European financial projects from 2002, with function points, application type (e.g., 

banking), and effort (1,000–30,000 person-hours). Its domain-specific focus tests complex attribute interactions, 

though limited to one industry. 

Kitchenham: Covers 145 UK projects from 2002, with function points, effort (500–50,000 person-hours), and 

modern methodologies (e.g., agile). Its diversity and contemporary relevance test scalability across varied project 

types. 

Cocomo81: Contains 63 projects from the 1970s–1980s, with lines of code (2,000–100,000), effort (5–1,140 

person-months), and 15 cost drivers (e.g., software reliability). Its structured format aligns with parametric 

models, but older practices may reduce modern relevance. 
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Each dataset’s effort range and attributes (e.g., LOC, function points, team factors) provide a comprehensive testbed, 

from small-scale (Kemerer) to large-scale (China) projects, and from historical (Cocomo81) to modern (Kitchenham) 

contexts. 

 

3.3 Relevance to the Study 

The datasets were chosen for their diversity in project types, sizes, and attributes, ensuring a robust evaluation 

of the stacked ensemble model’s performance across varied scenarios. Their inclusion in PROMISE and use in prior 

research enable reproducibility and comparability. Attributes like team experience and development methodology 

align with the model’s feature engineering needs, supporting preprocessing steps like normalization for China’s high-

dimensional data and imputation for Desharnais’s missing values. The datasets’ range of measurement units (LOC, 

function points, person-hours, person-months) tests the model’s flexibility, while their project contexts (commercial, 

financial, military) validate its applicability across industries. By evaluating the model on these datasets using MAE, 

RMSE, and R² (Section 6), the study demonstrates superior performance over traditional (e.g., COCOMO) and single-

model approaches, addressing generalization challenges. For example, the model’s low MAE of 8 on Cocomo81 and 

750 on China (Table 1) reflects its precision and scalability, driven by the dataset’s structured and diverse attributes. 

 

4. PROPOSED METHODOLOGY 

The proposed methodology introduces a Random Forest-based stacked ensemble model to enhance software 

development effort estimation accuracy, addressing limitations of traditional and single-model methods. By 

integrating four base learners—Random Forest (RF), Support Vector Machines (SVM), Gradient Boosting Machines 

(GBM), and Decision Trees (DT)—with a Random Forest meta-learner, the model captures diverse patterns in project 

data, improving robustness and generalization. Evaluated on seven benchmark datasets (Albrecht, China, Desharnais, 

Kemerer, Maxwell, Kitchenham, Cocomo81), this section details the model’s architecture, training, preprocessing, 

implementation, and evaluation strategy. 

 

4.1 Model Architecture and Training 

The stacked ensemble operates in two layers: base learners and a meta-learner, leveraging complementary 

algorithms to estimate effort in person-hours or person-months. The base learners independently predict effort from 

pre-processed project data, generating a feature matrix of predictions. The meta-learner combines these predictions 

to produce the final estimate, reducing bias and variance compared to single-model approaches. Figure 1 illustrates 

this workflow, showing data input, base learner predictions, meta-learner integration, and final output. 

 

 
 

Figure 1: Workflow of the Random Forest-Based Stacked Ensemble Model 

 

Figure 1 depicts the input dataset (attributes like lines of code, function points, team experience), four base learners 

(RF, SVM, GBM, DT), their predictions, the Random Forest meta-learner, and the final effort output, with data split 

into training (70%), validation (15%), and testing (15%) sets. 

Base Learners: 
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• Random Forest: Combines 100 decision trees using bagging (n_estimators=100, max_depth=10, tuned via 

grid search), excelling in high-dimensional, non-linear data like China and Kitchenham, contributing to low 

MAE (e.g., 750 for China, Section 6). 

• Support Vector Machines: Uses a radial basis function kernel (C=1.0, gamma=’scale’, optimized for bias-

variance balance) to model structured data like Desharnais, leveraging attributes like team experience. 

• Gradient Boosting Machines: Corrects errors sequentially with 100 estimators (learning_rate=0.1, tuned for 

convergence), performing well on small datasets like Kemerer. 

• Decision Trees: Offers interpretable splits (max_depth=5, min_samples_split=2, tuned to prevent 

overfitting), serving as a baseline for datasets like Cocomo81. 

Each base learner is trained on a 70% training split with 5-fold cross-validation, ensuring robustness. Their predictions 

form a feature matrix, where each column is a learner’s output for a project instance. 

Meta-Learner: A Random Forest model (50 trees, max_depth=8, tuned via grid search) integrates base learner 

predictions, trained on a 15% validation split. It weights contributions to minimize errors, enhancing generalization, 

as shown by low MAE (e.g., 8 for Cocomo81, Section 6). 

 

 

 

 

 

Table 1: Hyperparameter Settings for Base Learners and Meta-Learner 

 

Model Key Parameters Value 

Random Forest n_estimators, max_depth 100, 10 

SVM C, gamma 1.0, ‘scale’ 

GBM learning_rate, n_estimators 0.1, 100 

Decision Tree max_depth, min_samples_split 5, 2 

Meta-Learner (RF) n_estimators, max_depth 50, 8 

 

Table 1 lists optimized hyperparameters for each learner, tuned via grid search with 5-fold cross-validation, ensuring 

robust performance across datasets. 

 

4.2 Data Preprocessing, Implementation, and Evaluation 

To ensure the datasets are suitable for machine learning, a preprocessing pipeline addresses noise, missing values, 

and varying scales, followed by a Python implementation and rigorous evaluation. 

Data Preprocessing: The datasets (Section 3) include attributes like lines of code, function points, team experience, 

and development methodology, but require preprocessing: 

• Normalization: Numerical attributes (e.g., LOC in China, effort in Maxwell) are scaled to [0,1] using Min-

Max scaling, ensuring consistency for Kitchenham. 

• Categorical Encoding: Qualitative attributes (e.g., programming language in Kemerer, methodology in 

Cocomo81) are converted to numerical values using Label Encoding. 

• Missing Value Imputation: Missing data (e.g., 10% of team experience in Desharnais) are imputed using 

mean or median values, supporting stable training. 

• Feature Selection: Correlation analysis removes highly correlated attributes, reducing dimensionality for 

China’s high-dimensional data. 

The pre-processed data is split into training (70%), validation (15%), and testing (15%) sets, ensuring balanced project 

type representation, as shown in Figure 1. 

Implementation: The model is implemented in Python using: 

• Scikit-learn: For RF, SVM, DT, and preprocessing functions. 

• XGBoost: For optimized GBM implementation. 

• Pandas and NumPy: For data manipulation. 

• Matplotlib: For visualizing performance  

The modular design supports adding new learners or datasets. Hyperparameter tuning uses grid search with 5-fold 

cross-validation, as shown in Table 1, optimizing performance. 
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Evaluation: The model is evaluated on the 15% test split of each dataset, computing MAE, RMSE, and R² to assess 

accuracy and explanatory power. The stacked ensemble is compared against baselines (COCOMO, standalone RF, 

SVM, GBM, DT), showing 25–42% MAE improvement over COCOMO .The Wilcoxon signed-rank test confirms 

significant improvements (p-value < 0.05), ensuring reliability for project management. 

 

5. SYSTEM ARCHITECTURE 

The system architecture for the Random Forest-based stacked ensemble model provides a modular 

framework for accurate software development effort estimation. It processes historical project data from seven 

benchmark datasets (Albrecht, China, Desharnais, Kemerer, Maxwell, Kitchenham, Cocomo81) to deliver effort 

predictions in person-hours or person-months. The architecture is organized into four modules: data preprocessing, 

base learner training, meta-learner integration, and performance evaluation. These modules ensure efficient data 

handling, robust model training, effective prediction aggregation, and comprehensive accuracy assessment, making 

the system adaptable to diverse project contexts. Figure 1 illustrates the modular system architecture, showcasing the 

components and their interconnections. 

 
 

Figure 2: Modular System Architecture for Software Effort Estimation 

 

The figure 2 depicts the system’s modular design, encompassing data preprocessing, base learner training, meta-

learner integration, and performance evaluation. To include, access the article via IEEE Xplore, download the PDF, 

extract Figure 1, and paste it into the document. 

 

5.1 Data Preprocessing Module 

The data preprocessing module transforms raw datasets into a machine learning-ready format. It handles 

attributes such as lines of code, function points, team experience, and development methodology, which vary across 

datasets. The preprocessing steps include: 

Normalization: Scales numerical attributes, like lines of code and effort, to a [0,1] range using Min-Max scaling 

for uniformity. 

Categorical Encoding: Converts qualitative attributes, such as programming language or methodology, into 

numerical values via Label Encoding. 

Missing Value Imputation: Addresses missing data, such as team experience in Desharnais (approximately 10% 

missing), by imputing mean or median values based on attribute distribution. 

Feature Selection: Applies correlation analysis to retain highly correlated attributes, reducing dimensionality to 

enhance model efficiency. 

The output is a clean, normalized dataset split into training (70%), validation (15%), and testing (15%) sets, ensuring 

balanced project representation. This module is vital for processing diverse datasets like China and Kitchenham. 

 

5.2 Base Learner Training Module 

The base learner training module employs four machine learning algorithms to generate effort predictions: Random 

Forest, Support Vector Machines, Gradient Boosting Machines, and Decision Trees. Each learner leverages unique 

strengths to capture diverse data patterns, enhancing the ensemble’s robustness. 
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Random Forest: Combines 100 decision trees with a maximum depth of 10, effective for high-dimensional 

datasets like China. 

Support Vector Machines: Uses a radial basis function kernel with C=1.0 and gamma=’scale,’ suitable for 

structured datasets like Desharnais. 

Gradient Boosting Machines: Applies a learning rate of 0.1 and 100 estimators, performing well on datasets like 

Kemerer. 

Decision Trees: Employs a maximum depth of 5 and minimum samples per split of 2, providing interpretable 

baseline predictions. 

Each learner is trained on the 70% training split with 5-fold cross-validation to prevent overfitting. The predictions 

form a feature matrix, where each column represents a learner’s output for a project instance, serving as input for the 

meta-learner 

 

5.3 Performance Evaluation Module 

The meta-learner integration module aggregates the base learners’ predictions to produce the final effort 

estimate. A Random Forest model with 50 trees and a maximum depth of 8 serves as the meta-learner. Trained on the 

15% validation split, it optimizes the weighting of base learner predictions, ensuring accurate estimates across datasets 

like Albrecht and Cocomo81. This stacking approach enhances generalization for varied project complexities. 

The performance evaluation module assesses the model’s accuracy on the 15% test split, computing three regression 

metrics: 

Mean Absolute Error (MAE): Calculates the average absolute difference between predicted and actual effort as 

MAE = (1/n) Σ |y_i - ŷ_i|. 

Root Mean Square Error (RMSE): Measures the standard deviation of prediction errors as RMSE = √((1/n) Σ (y_i 

- ŷ_i) ²). 

R-Squared (R²): Determines the proportion of variance explained as R² = 1 - (RSS/TSS), where RSS is the residual 

sum of squares and TSS is the total sum of squares. 

The model’s performance is compared against baselines, including COCOMO, standalone Random Forest, Support 

Vector Machines, Gradient Boosting Machines, and Decision Trees, using the Wilcoxon signed-rank test to validate 

improvements. This evaluation ensures reliability across the seven datasets. 

 

5.4 Implementation Details 

The system is implemented in Python using open-source libraries for efficiency and reproducibility: 

Scikit-learn: Supports Random Forest, Support Vector Machines, Decision Trees, and preprocessing functions. 

XGBoost: Implements Gradient Boosting Machines for optimized performance. 

Pandas and NumPy: Facilitate data manipulation and preprocessing. 

Matplotlib: Visualizes performance metrics, such as error plots. 

The modular design enables integration of new learners or datasets. Training and evaluation are conducted on a 

standard computing environment (e.g., 16 GB RAM, 3.0 GHz CPU), ensuring accessibility for practical applications 

in software project management. 

 

6. RESULTS AND DISCUSSION 

 

This section evaluates the performance of the Random Forest-based stacked ensemble model for software 

effort estimation, tested on seven benchmark datasets: Albrecht, China, Desharnais, Kemerer, Maxwell, Kitchenham, 

and Cocomo81. The model’s accuracy is measured using Mean Absolute Error (MAE), Root Mean Square Error 

(RMSE), and R-squared (R²), compared against baselines: COCOMO, standalone Random Forest (RF), Support 

Vector Machines (SVM), Gradient Boosting Machines (GBM), and Decision Trees (DT). The results, presented 

through two tables and six figures, demonstrate the model’s superior predictive accuracy and robustness. The 

discussion analyzes strengths, limitations, and implications for software project management. 

 

6.1 Performance Metrics 

The stacked ensemble model was evaluated on the 15% test split of each dataset, with MAE, RMSE, and R² 

aggregated to assess accuracy and explanatory power. MAE measures the average absolute difference between 

predicted and actual effort, RMSE quantifies error dispersion, and R² indicates variance explained. 

 

Table 2: Performance Metrics of the Stacked Ensemble Model 
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Dataset MAE (Person-Hours/Months) RMSE (Person-Hours/Months) R² 

Albrecht 120 180 0.94 

China 750 1100 0.90 

Desharnais 180 260 0.92 

Kemerer 7 10 0.88 

Maxwell 350 500 0.91 

Kitchenham 550 800 0.89 

Cocomo81 8 12 0.95 

 

Table 2 shows the stacked ensemble’s low MAE (7–750) and RMSE (10–1100), with R² scores of 0.88–0.95, 

indicating high accuracy and explanatory power. Cocomo81 achieves the best results (MAE = 8 person-months, R² = 

0.95) due to its structured attributes. Kemerer has the lowest R² (0.88), reflecting challenges with its small size (15 

projects). China’s robust performance (MAE = 750, R² = 0.90) highlights scalability for large datasets. 

 

6.2 Comparative Analysis 

The stacked ensemble was compared against baselines, with MAE, RMSE, and R² as key metrics. The comparisons, 

visualized in Figures 3–5 and Figure 11, highlight the model’s superiority. 

Table 3: Comparative MAE Across Models 

 

Dataset Stacked Ensemble COCOMO RF SVM GBM DT 

Albrecht 120 200 150 160 145 170 

China 750 1300 900 950 880 1000 

Desharnais 180 300 220 230 210 240 

Kemerer 7 12 9 10 8.5 11 

Maxwell 350 600 450 470 430 500 

Kitchenham 550 1000 700 720 680 750 

Cocomo81 8 15 10 11 9.5 12 

 

Table 3 shows the stacked ensemble’s lowest MAE across datasets, with 25–42% improvements over COCOMO (e.g., 

750 vs. 1300 for China) and 10–25% over standalone models (e.g., 120 vs. 150 for RF on Albrecht). The largest gains 

are on China and Kitchenham, while Kemerer shows smaller improvements due to limited data. 

  
 

Figure 3: MAE Comparison Across Models and Datasets 

 

Figure 3 is a bar chart comparing MAE across models. The stacked ensemble’s lowest MAE (e.g., 750 for China, 8 

for Cocomo81) outperforms COCOMO (1300, 15) and RF (900, 10), confirming Table 2. The figure highlights the 

model’s ability to reduce errors, especially on large (China) and structured (Cocomo81) datasets. 

 

http://www.ijmem.com/


   

Pg. 48                                                                                                        www.ijmem.com 
 
 

International Journal of Modern Engineering and Management | IJMEM     
                                                                                                 ISSN No: 3048-8230 
                                                                               Volume 2 Issue 5 May - 2025 

 
 

Figure 4: RMSE Comparison Across Models and Datasets 

 

Figure 4 compares RMSE, with the stacked ensemble achieving the lowest values (e.g., 180 for Albrecht, 12 for 

Cocomo81). Improvements over COCOMO (e.g., 1100 vs. 2000 for China) and RF (260 vs. 350 for Desharnais) show 

the model’s precision across project scales, minimizing error dispersion. 

 

6.3 Discussion 

Tables 1–2 and Figures 1–4 confirm the stacked ensemble’s superior performance, with low MAE (7–750), 

RMSE (10–1100), and high R² (0.88–0.95). The model’s strength lies in integrating four base learners (Figure 2), 

reducing errors (Figures 3–4). Figure 1’s preprocessing ensures data quality, critical for Desharnais’s MAE of 180. 

The model outperforms COCOMO by modeling non-linear relationships (e.g., MAE of 550 vs. 1000 for Kitchenham, 

Figure 3) and standalone models (e.g., GBM’s MAE of 680, Table 2). The meta-learner adapts to dataset scales, from 

small (Kemerer) to large (China). Limitations include computational complexity and challenges with small datasets 

(Kemerer, R² = 0.88). Historical datasets may limit modern applicability. 

Low MAE enables precise scheduling and budgeting, reducing cost overruns. The model’s versatility supports diverse 

industries, as shown in Figures 3–4, highlighting data-driven tools’ value for project planning. 

 

6.4 Statistical Significance 

The Wilcoxon signed-rank test confirms MAE and RMSE improvements over baselines are statistically significant 

(p-value < 0.05), supported by Figures 3–4, ensuring reliability. 

 

7. CONCLUSION 

This study proposed a Random Forest-based stacked ensemble model for software effort estimation, 

evaluated on seven benchmark datasets: Albrecht, China, Desharnais, Kemerer, Maxwell, Kitchenham, and 

Cocomo81. The model integrates four base learners (Random Forest, Support Vector Machines, Gradient Boosting 

Machines, Decision Trees) with a Random Forest meta-learner, achieving superior predictive accuracy compared to 

baseline methods, including COCOMO and standalone machine learning models.The results, as shown in Tables 1 

and 2 and Figures 3 and 4, demonstrate the model’s effectiveness. The stacked ensemble achieved low Mean Absolute 

Error (MAE) ranging from 7 to 750 person-hours/months and Root Mean Square Error (RMSE) from 10 to 1100, with 

R-squared (R²) scores of 0.88 to 0.95 across datasets. Notably, the model excelled on the Cocomo81 dataset (MAE = 

8 person-months, R² = 0.95) due to its structured attributes, while the China dataset (MAE = 750, R² = 0.90) 

highlighted scalability for large, high-dimensional data. Compared to COCOMO, the model reduced MAE by 25–

42% (e.g., 550 vs. 1000 for Kitchenham), and by 10–25% over standalone models (e.g., 120 vs. 150 for RF on 

Albrecht), as visualized in Figure 3. The low RMSE values (Figure 4) further confirm the model’s precision, 

minimizing error dispersion across project scales.The model’s success stems from its robust preprocessing pipeline 

(Figure 1), which ensures data quality, and the diverse base learner training workflow (Figure 2), which combines 

complementary predictions. The meta-learner’s ability to weight these predictions adapts the model to varied dataset 

characteristics, from small (Kemerer) to large (China) projects. The Wilcoxon signed-rank test validated these 

improvements as statistically significant (p-value < 0.05), underscoring the model’s reliability. 

Limitations include the computational complexity of training multiple learners, which may challenge 

resource-constrained environments. The Kemerer dataset’s lower R² (0.88) indicates difficulties with small datasets, 

where limited data diversity restricts performance. The reliance on historical datasets, such as Cocomo81, may reduce 

applicability to modern agile or DevOps projects, necessitating further validation on contemporary data. 
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The proposed model offers significant implications for software project management. Its precise effort 

estimates enable accurate scheduling and budgeting, reducing the risk of cost overruns and delays. The model’s 

versatility across datasets supports its use in diverse industries, from commercial to financial software development. 

These findings highlight the potential of ensemble-based machine learning to enhance data-driven project planning. 

Future work includes optimizing the model’s computational efficiency to improve scalability for real-time 

applications. Exploring data augmentation techniques could address challenges with small datasets like Kemerer. 

Additionally, validating the model on modern software project datasets, incorporating agile and DevOps metrics, 

would enhance its relevance to current development practices. Integrating deep learning techniques or hybrid models 

may further improve predictive accuracy, building on the stacked ensemble’s foundation. 
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