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Abstract: The Software-Defined Oscilloscope (SDO) is revolutionizing waveform analysis by introducing a level 

of flexibility and efficiency that traditional oscilloscopes cannot match. Unlike conventional models, SDOs rely 

heavily on software for signal acquisition, analysis, and display, making them highly customizable and 

adaptable to a wide range of applications. Software-Defined Oscilloscopes (SDOs) leverage digital signal 

processing (DSP) techniques to achieve flexibility and software-based waveform analysis, allowing integration 

of features such as FFT and spectrum analysis [1], [2]. This reliance on software allows for frequent updates, 

enabling the addition of new features and functionalities without requiring hardware upgrades. Traditional 

oscilloscopes are limited by hardware constraints, while SDOs are continuously upgradable through software 

patches and new algorithms [3], [13]. As a result, SDOs offer significant advantages, including high-speed 

sampling rates, wide bandwidth support, and advanced analytical tools like FFT and spectrum analysis. These 

capabilities allow users to capture and study complex signals and transient phenomena with exceptional 

precision. Furthermore, these devices are often more cost-effective than traditional high-end oscilloscopes, 

offering a compelling alternative for industries seeking efficient and scalable solutions. The applications of 

SDOs span multiple sectors, including electronics design, telecommunications, automotive, and aerospace. 

Technological advancements are propelling the capabilities of SDOs even further. Improvements in FPGA 

technology allow for faster real-time processing, while cloud computing facilitates seamless remote operations 

and data management. The integration of artificial intelligence automates complex analyses and improves the 

identification of anomalies, enhancing operational efficiency 
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1. INTRODUCTION 

A software-defined oscilloscope (SDO) is an advanced measurement tool that utilizes software and digital signal 

processing (DSP) to analyze and visualize electrical waveforms. Unlike traditional oscilloscopes, which rely heavily 

on dedicated hardware components for signal acquisition and processing, SDOs use a software-driven approach, 

where the core functionalities are implemented through algorithms running on a computer, tablet, or embedded 

system.This transition from hardware-centric to software-centric design provides greater flexibility, cost-

effectiveness, and scalability, making SDOs an attractive alternative to conventional oscilloscopes.The key advantage 

of software-defined oscilloscopes lies in their flexibility. Traditional oscilloscopes come with predefined hardware 

features that limit their adaptability to new measurement needs. In embedded system development, SDOs are essential 

for debugging microcontrollers, FPGA-based circuits, and digital interfaces such as SPI, I2C, and UART[1]. The 

automotive and IoT sectors also benefit from SDOs, as they are used to analyze sensor signals, CAN bus data, and 

power electronics, ensuring the reliability of modern automotive and smart devices. Furthermore, in education and 

research, SDOs provide a cost-effective and flexible solution for academic institutions, allowing students and 

researchers to experiment with waveform analysis without the need for expensive hardware[2].Their ability to provide 

flexible, high-performance, and cost-effective signal analysis makes them an indispensable tool for engineers, 

researchers, and educators. By redefining how waveforms are acquired and analyzed, SDOs represent the future of 

oscilloscope technology, bridging the gap between traditional hardware-based instruments and modern, software-

driven solutions. 

2. SYSTEM DESCRIPTION 

In this section, the theory of the system and implementation of each of the oscilloscope's sub-systems is discussed, as 

well as the principles of operation and implementation of all. Each of the following subsections details the function 

and operation of a subsystem of the oscilloscope, beginning with the input stage ending to the final output stage. The 

overall system is divided into 2 major parts – 
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1. Hardware Interface  

 

a. Triggering circuit 

b. Level Shifter and Scaler 

c. Low Pass Filter Circuit 

d. Firmware 

 

The triggering circuit employs a Schmitt trigger to avoid false triggering due to signal noise, stabilizing 

waveform capture [4], [18].Level shifting is necessary to ensure safe ADC sampling, especially when input 

signals include negative voltages, as discussed in [10], [16]. Proper design of the low-pass filter stage helps 

in removing high-frequency noise components before digitization [6], [20]. 

2. Software Interface 

For software we are using python to generate the grid and the waveform using in built modules like - 

matplotlib, pyqt, numpy. 

 

A. Triggering Circuit 

A triggering circuit in a software-defined oscilloscope (SDO) is essential for capturing signals at precise moments, 

ensuring accurate waveform analysis using Schmitt Trigger circuit, a type of comparator with hysteresis that 

provides stable digital output by eliminating noise from an analog input signal. The circuit operates by first comparing 

the input signal with an upper threshold voltage; if the signal exceeds this threshold, the output is set HIGH. 

However, if the input remains below the upper threshold, it is further compared to a lower threshold voltage. When 

the input falls below this lower threshold, the output switches to LOW[4]. 

If the signal remains between the upper and lower thresholds, the circuit maintains its previous state, preventing rapid 

oscillations due to minor fluctuations or noise[3]. This hysteresis effect is reinforced by a feedback mechanism, 

which ensures that once the output state changes, it remains stable until the input crosses the opposite threshold. This 

design makes Schmitt Trigger circuits highly effective in noise immunity, preventing unintended switching caused 

by small variations in the input signal. The circuit is widely used in switch debouncing, waveform shaping, and 

level detection applications in digital electronics, oscilloscopes, and communication systems, where stable and 

predictable signal processing is essential. 

Hysterisis Thresholds 

Upper threshold voltage (𝑉𝑈𝑇) and lower threshold voltage (𝑉𝐿𝑇) are determined by: 

𝑉𝑈𝑇 =  
𝑉𝑅𝐸𝐹𝑅1

𝑅1 + 𝑅2

+  
𝑉𝑆𝑎𝑡𝑅2

𝑅1 + 𝑅2

 

𝑉𝐿𝑇 =  
𝑉𝑅𝐸𝐹𝑅1

𝑅1 +  𝑅2

−  
𝑉𝑆𝑎𝑡𝑅2

𝑅1 + 𝑅2
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Fig. 1 Triggering Circuit 

 

B.  Level Shifter and Scaler Circuit 

The Level Shifter and Scaler Circuit in the Software-Defined Oscilloscope (SDO) is crucial for adapting incoming 

waveforms to levels compatible with the ADC input of the microcontroller. Typical signals coming from a circuit 

under test may span both positive and negative voltages (e.g., ±3.3V sine waves), which are unsafe for direct 

ADC sampling, as most ADCs operate only within a 0V to 3.3V or 0V to 5V range. 

To address this, the Level Shifter and Scaler Circuit performs two key functions: 

• Voltage Scaling: 

It attenuates the amplitude of the input signal using a resistive voltage divider. This ensures that even the 

highest peaks of the signal remain within the acceptable voltage range of the ADC, preventing damage and 

clipping. 

• Level Shifting (DC Biasing): 

After scaling, the signal is shifted upwards by adding a positive DC offset. This is achieved using biasing 

resistors or op-amp-based circuits. 

This shift ensures that originally negative parts of the waveform (such as a -3.3V trough) are moved into 

the positive domain (near 0V), making them safe for ADC sampling. 

Example: 

• A sine wave ranging from -3.3V to +3.3V is first attenuated to a smaller swing (e.g., -1.65V to +1.65V). 

• Then, a +1.65V DC offset is added, resulting in a final signal swinging between 0V and 3.3V, perfectly 

suited for ADC input. 

The circuit ensures linear preservation of the input signal’s shape while staying within safe ADC input levels. It is 

essential for the accurate and safe acquisition of a wide variety of analog signals without introducing distortion or 

clipping. 

This stage ensures that signals of different amplitudes and polarities can be correctly sampled and analyzed in the 

software without hardware damage or loss of fidelity. Techniques for safe signal level translation are detailed in 

[10], [16] 
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Fig. 2 Level Shifter and Scaler Circuit 

C. Low Pass Filter Circuit 

The low-pass filter (LPF) circuit is used as a filter circuit, which allows low-frequency signals to pass while 

attenuating high-frequency components. The process begins when the input signal enters the circuit and first passes 

through a resistor. This resistor plays a crucial role in setting the circuit's cutoff frequency by working in conjunction 

with the capacitor[6]. After the resistor, the signal reaches a capacitor, which acts as a frequency-dependent 

component. The capacitor filters out high-frequency components by providing a low impedance path for them to 

ground, thereby attenuating unwanted noise or interference. The remaining signal, which consists mostly of low-

frequency components, is then passed as the filtered output signal. Additionally, an optional feedback loop can 

be included to fine-tune the filtering characteristics, further enhancing signal stability and performance. Low-pass 

filters are widely used in audio processing, signal conditioning, and communication systems, where maintaining 

low-frequency integrity while removing high-frequency noise is essential for optimal performance as shown in figure 

3 

Cutoff Frequency Equation 

Defined by values of Resistor (R1) and (R2) and Capacitor (C1) and (C2): 

𝑓𝑐 =  
1

2𝛱√𝑅1𝑅2𝐶1𝐶2

 

 

Fig. 3 Sallen-Key 2nd Order LPF Circuit 
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Firmware 

The firmware developed for the Software-Defined Oscilloscope (SDO) plays a critical role in signal acquisition, 

digitization, and communication between the hardware front-end and the software interface running on a computer. 

The firmware ensures that the data capture process is reliable, synchronized, and efficient, enabling accurate signal 

reconstruction at the software side. ADCs are configured to sample at rates satisfying the Nyquist criterion, ensuring 

that sampled data can reconstruct the input signal without aliasing [5], [7]. The firmware detects trigger events based 

on user-defined conditions such as threshold voltage and edge polarity [8], [18]. 

1. Signal Acquisition and Sampling 

The firmware initializes the microcontroller’s Analog-to-Digital Converter (ADC) to continuously sample the 

incoming analog signal from the output of the level shifter and low-pass filter circuit. The ADC is configured with an 

appropriate sampling rate based on the expected input frequency range, ensuring that the Nyquist criterion is satisfied 

to avoid aliasing. Typically, the ADC resolution is set to 10 or 12 bits to balance between precision and transmission 

speed. A timer peripheral is employed to trigger ADC conversions at fixed intervals, providing consistent timebase 

sampling. The sampled data is temporarily stored in a buffer within the microcontroller's memory. This buffered 

approach allows for a controlled and organized transfer of data to the communication module once triggering 

conditions are met. 

2. Trigger Detection Mechanism 

One of the core functionalities implemented in firmware is trigger detection. To avoid random or unstable 

waveforms, the microcontroller continuously monitors incoming ADC samples and evaluates them against user-

defined trigger conditions: 

• Trigger Level: A voltage threshold set by the user. 

• Trigger Slope: Rising edge (low-to-high crossing) or falling edge (high-to-low crossing). 

The firmware compares successive ADC values to detect if the signal crosses the trigger level according to the selected 

slope. When operating in Normal or Single trigger mode, the firmware remains in a "waiting" state until the trigger 

event occurs. Once the trigger is detected, the firmware flags the event and captures a defined number of pre-trigger 

and post-trigger samples, ensuring a complete snapshot of the waveform is available for display. This behavior 

replicates the working of real-time oscilloscopes, as documented in [1][2], ensuring a steady and analyzable waveform 

presentation. 

3. Data Formatting and UART Transmission 

After the triggering event and sample acquisition, the firmware formats the ADC data for transmission. The data is 

packaged into a simple UART data stream, often consisting of raw voltage values or encoded packets with headers 

to signify transmission beginning and end. 

Key aspects of this step include: 

• Baud Rate Optimization: To balance real-time performance and data integrity, a high baud rate (e.g., 

115200 or higher) is configured. 

• Packetization: Each packet may include sample number, channel information (if multi-channel is 

implemented), and the ADC result. 

• Synchronization: Special start markers (such as 0xAA, 0x55) are used to ensure the receiving Python 

application correctly identifies packet boundaries. 

The use of UART is ideal for simple, low-latency communication, as explored in embedded system protocols [14]. 

A timer-based sampling strategy ensures that ADC conversions occur at fixed intervals, critical for consistent 

timebase creation [12]. 

 

4. Trigger Mode Management 

The firmware supports three major trigger modes: 

• Auto Mode: Samples and sends data continuously, regardless of trigger conditions. 

• Normal Mode: Samples only after trigger condition is satisfied; otherwise waits. 
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• Single Mode: Captures a single triggered waveform and halts until manually rearmed. 

The management of these modes is implemented through state machines, ensuring organized transitions between 

"waiting", "triggered", and "idle" states. This behaviour is essential for proper oscilloscope operation, mirroring 

standard practices [2][4]. 

After trigger detection, captured waveform data is transmitted via UART using efficient packetization methods to 

avoid loss of information [14]. 

5. System Reliability and Error Handling 

The firmware incorporates basic error detection mechanisms: 

• Timeout counters: To prevent indefinite waiting if the trigger condition is rare. 

• Buffer overrun detection: Ensures that sampling does not overwrite critical data before transmission. 

• UART transmission error detection: Includes parity or checksum validation if needed. 

Such robustness improves the reliability of the Software-Defined Oscilloscope, especially during prolonged operation. 

6. Power Management 

Since the firmware operates in a real-time embedded environment, it also ensures efficient power management by 

using interrupt-driven sampling instead of continuous polling. This helps minimize CPU usage, allowing low-power 

operation when idle between triggers. 

7. Future Expandability 

The current firmware design allows future extensions, including: 

• Multi-channel signal acquisition. 

• Adjustable sampling rates through software commands. 

• Basic waveform analysis (peak detection, frequency measurement) onboard. 

• Wireless transmission using modules like Bluetooth or Wi-Fi. 

By separating signal acquisition, trigger evaluation, and communication tasks cleanly, the firmware maintains a 

modular structure that can evolve with software updates, aligning with modern software-defined instrumentation 

practices [2][3]. 

2. Software Interface 

In the software implementation of our system, we use Python to generate the grid and waveform using built-in 

modules such as Matplotlib, PyQt, and NumPy. These libraries provide powerful tools for visualization, user 

interface development, and numerical computations. Matplotlib is used to plot and display the waveform, allowing 

real-time visualization of signals. PyQt is employed to create a graphical user interface (GUI), enabling interactive 

control of parameters such as scaling, zooming, and signal analysis. NumPy plays a crucial role in handling numerical 

operations, such as waveform generation, signal processing, and data manipulation. By combining these modules, we 

can efficiently simulate, analyze, and visualize waveforms, making Python an ideal choice for implementing software-

defined oscilloscopes and other signal processing applications. The software is built on Python, utilizing Matplotlib 

for real-time waveform plotting, PyQt for GUI creation, and NumPy for signal handling [21]. 

Following is a screenshot of the software we are developing in its beta stage in Fig 5.– 
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Fig. 5.1 

 

Fig. 5.2 

And this is how we are projecting the waveforms in the software – 

 

Fig. 5.3 

 

Fig. 5.4 
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The above image shows a 3.3V AC Sinusoidal waveform being projected. Serial data reception from the 

microcontroller is handled in non-blocking mode to ensure responsive GUI operation [14], [15]. 

 

 

CONCLUSION 

The implementation of the software-defined oscilloscope successfully demonstrated its ability to capture, process, and 

display waveforms in real-time using software-based techniques. By leveraging Python libraries such as Matplotlib, 

PyQt, and NumPy, the oscilloscope provided a flexible and interactive user interface for signal analysis. Further 

improvements could integrate cloud-based remote access and AI-based anomaly detection, enhancing the functionality 

of SDOs [2], [15], [17]. The triggering mechanism played a crucial role in stabilizing the waveform display, ensuring 

precise and reliable signal visualization. Compared to traditional hardware-based oscilloscopes, the SDO offers greater 

flexibility, cost-effectiveness, and adaptability, allowing for software-driven modifications and enhancements. While 

the system effectively processed and displayed signals, some limitations, such as sampling rate constraints and latency 

in high-frequency applications, were observed. These challenges can be addressed in future improvements through 

higher-performance ADCs and optimized signal processing algorithms. Increasing the sampling bandwidth by using 

faster ADCs and improving transmission speed could reduce latency in high-frequency applications [7], [12]. Overall, 

the software-defined oscilloscope proved to be an efficient and reliable tool for waveform analysis, making it a 

valuable solution for applications in education, research, and embedded system development. With further 

advancements, SDOs have the potential to revolutionize signal measurement and analysis by integrating AI-based 

processing and cloud-based remote access for enhanced functionality. 
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