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Abstract: In this work, we establish the existence of a randomized online algorithm for the 2-server 3-point 

problem with an expected competitive ratio of at most 1.5897. The competitive ratio is a measure of the 

performance of an online algorithm compared to an optimal offline solution, where a ratio of 1 signifies perfect 

performance. Our result represents the first nontrivial upper bound for randomized algorithms in the context 

of the k-server problem in a general metric space. Notably, this upper bound is well below the deterministic 

lower bound of 2 that holds for the 2-server problem in such spaces. The significance of this result lies in the 

fact that it showcases a substantial improvement in the expected performance of randomized algorithms over 

their deterministic counterparts, thus advancing our understanding of the competitive behavior of online 

algorithms in general metric spaces. This finding opens the door for further exploration into the development 

of more efficient randomized algorithms for k-server problems in various settings, with potential applications 

across a variety of domains requiring optimal resource allocation in real-time. 
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1. Introduction:  

The k-server problem, introduced by Manasse, McGeoch and Sleator , is one of the most fundamental online problems. 

In this problem the input is given as k initial server positions and a sequence p1, p2,· · · of requests in the Euclidean 

space, or more generally in any metric space. For each request pi, the online player has to select, without any 

knowledge of future requests, one of the k servers and move it to pi. The goal is to minimize the total moving distance 

of the servers. 

The k-server problem is widely considered instructive to the understanding of online problems in general, yet, there 

are only scattered results. The most notable open problem is perhaps the k-server conjecture, which states that the k-

server problem is k-competitive. The conjecture remains open for k ≥ 3, despite years of effort by many researchers; 

it is solved for a very few special cases, and remains open even for 3 servers when the metric space has more than 6-

points. The current best upper bound is 2k − 1 given by Koutsoupias and Papadimitriou in 1994 . The conjecture is 

true for k = 2, for the line , trees , and on fixed k + 1 or k + 2 points . It is still open for the 3-server problem on more 

than six points and also on the circle . The lower bound is k which is shown in the original paper . 

In the randomized case, even less is known. Indeed, one of hardest problems in the area of online algorithms is to 

determine the exact randomized competitiveness of the k-server problem, that is, the minimum competitiveness of any 

randomized online algorithm for the server problem. (As is customary, we mean by “competitive ratio” of a 

randomized algorithm its expected compete ratio.) Very little is known for general k. Bartal et al. have an asymptotic 

lower bound, namely that the competitiveness of any randomized online algorithm for an arbitrary metric space is 

Ω(log k/log2 log k). 

Even the case k = 2 is open for the randomized 2-server problem, and, despite much effort, no randomized algorithm 

for general metric spaces with competitiveness strictly lower than 2 has been found. Surprisingly, the classic 

algorithm random slack , a very simple trackless algorithm, has been the algorithm with best competitive ratio for 

almost two decades now. Karlin et al. gave a lower bound of 𝑒𝑒−1ee−1, which is the bound for the classical “ski rental 

problem”. This bound is derived in a space with three points, where two points are located closely together and the 

third point is far from both of these. The best known lower bound is 1 + 𝑒−12e−12 ≈ 1.6065, but this lower bound 

requires a space with at least four points, see . (A lower bound very slightly larger than 1 + 𝑒−12e−12 is stated in , but 

without proof.). 

It is indeed surprising that no randomized algorithm with competitive ratio better than 2 has been found, since it seems 

intuitive that randomization should help. It should be noted that generally ran-domization is quite powerful for online 

problems, since it obviously reduces the power of the adversary. Such seems to be the case for the 2-server problem 

as well. 
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To give intuition, consider a simple 2-server problem on the three equally spaced points a, b and c on a line (See Fig. 

1). It is easy to prove a lower bound of 2 for the competitive ratio of any deterministic algorithm: The adversary 

always gives a request on the point the server is missing. Thus for any online algorithm, 𝒜A, its total cost is at least n – 

the number of requests. But it turns out by a simple case analysis that the offline cost is n/2. 

Suppose instead that 𝒜A is randomized. Now if the request comes on b (with missing server), then 𝒜A can decide 

by a coin flip which server (a or c) to move. An (oblivious) adversary knows 𝒜A’s algorithm completely but does not 

know the result of the coin flip and hence cannot determine which point (a or c) has the server missing in the next 

step. The adversary would make the next request on a but this time a has a server with probability 1/2 and 𝒜A can 

reduce its cost. Without giving details, it is not hard to show that this algorithm 𝒜A – with the randomized action for 

a request to b and a greedy action one for others – has a competitive ratio of 1.5. 

Indeed, one would imagine that it might be quite straightforward to design randomized algorithms which perform 

significantly better than deterministic ones for the 2-server problem. As mentioned above this has not been the case. 

Only few special cases have yielded success. Bartal, Chrobak, and Larmore gave a randomized algorithm for the 2-

server problem on the line, whose competitive ratio is slightly better than 2 (1557815578 ≈ 1.987) . One other result 

by Bein et. al. uses a novel technique, the knowledge state method, to derive a 19121912 competitive randomized 

algorithm for the special case of Cross Polytope Spaces. Using similar techniques a new result for paging (the k-server 

problem in uniform spaces) was recently obtained. Bein et al. gave an Hk-competitive randomized algorithm which 

requires only O(k) memory for k-paging. (Though the techniques in the current paper are inspired by this work, the 

knowledge state method is not used here.) Lund and Reingold showed that if specific three positions are given, then 

an optimal randomized algorithm for the 2-server problem over those three points can be derived in principle by using 

linear programming. However, they do not give actual values of its competitive ratio and to this date the problem is 

still open even for the 2-server 3-points case. 

 

Figure 1.  3 points on a line 

Finally, we mention other somewhat related work in the realm of online computation: see the work of Karlin et al. 

[for ski-rental problems, Reingold et al. for list access problems, and Fiat et al. for paging. 

Our Contribution. In this paper, we prove that the randomized competitive ratio of the 2-server 3-point problem in 

a general metric space is at most 1.5897 and also we conjecture that it is at most e/(e − 1) ≈ 1.5819. Thus we give an 

upper bound that matches the lower bound within a small ε. 

 
Figure 2. Triangle CLR 

The underlying idea is to find a finite set S of triangles (i.e. three points) such that if the competitive ratio for each 

triangle in S is at most c, then the competitive ratio for all triangles in any metric space is at most c·δ(S) where δ(S) ≥ 1 

is a value determined by S. To bound the competitive ratio for each triangle in S, we apply linear programming. As 

we consider larger sets, the value of δ(S) becomes smaller and approaches 1. Thus the upper bound of the general 

competitive ratio also approaches the maximum competitive ratio of triangles in S and we can obtain arbitrarily close 

upper bounds by increasing the size of the computation. 
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Our result in this paper strongly depends on computer simulations similar to earlier work based on knowledge states. 

Indeed, there are several successful examples of such an approach, which usually consists of two stages; (i) reducing 

infinitely many cases of a mathematical proof to finitely many cases (where this number is still too large for a “standard 

proof”) and (ii) using computer programs to analyze the finitely many cases. See the work in for design and analysis 

of such algorithms. In particular, for online competitive analysis, Seiden proved the currently best upper bound, 

1.5889, for online bin-packing . Also with this approach, Horiyama et al. obtained an optimal competitive ratio for 

the online knapsack problem with resource augmentation by buffer bins. 

3. Three Points on a Line 

We now prove Lemma 1. To this end we make use of a state diagram, called the offset graph, which indicates the 

value of the work function W (s, σ) . Recall that W (s, σ) gives the optimal offline cost under the assumption that all 

requests given by σ have been served and the final state after σ must be s, where s is one of (L, C), (L, R) and (C, R) 

in our situation. 

Fig. 3 shows the offset graph, 𝐺𝑂𝑃𝑇𝑛GnOPT for ∆(1, n, n + 1). Each state contains a triple (x, y, z), which represents 

three values for the work function; the first for when (C, R) are covered (leaving L blank), the next for when (L, R) 

are covered, and the last for when (L, C) are covered. For instance, in the figure the top middle state is the initial state, 

which is denoted by VLR. Recall that the initial server configuration is (L, R). This state contains (n, 0, 1), which means 

that W ((L, C), φ) = n, W ((L, R), φ) = 0, and W ((C, R), φ) = 1. For example, to see that W ((L, C), φ) = n, consider 

that initially the request sequence is empty – denoted by φ. The initial server configuration is (L, R); thus in order to 

change this configuration into (L, C), one can optimally move a server from R to C at cost n. Therefore, W ((L, C), φ) 

= n. Consider now state V3 – the fourth state from the top. Its triple gives the value of the work function for the request 

sequence CLC, namely , W ((L, C), CLC), W ((L, R), CLC) and W ((C, R), CLC). Note that this request sequence 

– CLC– is obtained by concatenating the labels of arrows from the initial state VLR to V3. 

For the work function value of W ((L, R), CLC) we have W ((L, R), CLC) = 4. This is calculated from the previous 

state V2 in the following way: Server position (L, R) can be reached from previous configuration (L, R) (= 2) plus 2 (= 

the cost of moving a server on L to C and back to L) or from previous configuration (C, R) (= 3) plus 1 (= the cost of 

moving a server on C to L), i.e. in both cases a value of 4. From state V3, there is an arrow to VCR as a result of 

request R. Carrying out a similar calculation, one can see that the triple should change from (n, 4, 3) to (n + 4, 4, 3) in 

this transition. However, the triple in VCR is (n + 1, 1, 0). This is because of an offset value of 3 on the arrow 

from V3 to VCR. Namely, (n + 1, 1, 0) in VCR is obtained from (n + 4, 4, 3) by reducing each value by 3. Because of the 

use of offset values a finite graph can be used to represent the potentially infinitely many values of the work function. 

Thus one can conclude that (n, 0, 1) in the initial state VLR also means (n + 4, 4, 5), (n + 8, 8, 9), · · · by traversing the 

cycle VLRV1V2V3VCR repeatedly. We leave it to the reader to formally verify that Fig. 3 is a valid offset graph for ∆(1, n, 

n + 1). 

We introduce another state graph, called the algorithm graph. Fig. 4 shows the algorithm graph, 𝐺𝐴𝐿𝐺𝑛GnALG, for 

∆(1, n, n + 1). Notice that 𝐺𝐴𝐿𝐺𝑛GnALG is similar to 𝐺𝑂𝑃𝑇𝑛GnOPT. Each state includes a triple (q1, q2, q3) such 

that q1 ≥ 0, q2 ≥ 0, q3 ≥ 0 and q1+q2+q3 = 1, which means that the probabilities of configurations (C, L), (L, R) and 

(C, R) are q1, q2 and q3, respectively. (Since the most recent request must be served, one of the three values is zero. In 

the figure, therefore, only two probabilities are given. For example, in S1, the probabilities for (L, C)(= p1) and for 

(C,R)(= 1 − p1) are given. In our specific algorithm 𝐺𝐴𝐿𝐺𝑛GnALG, we define those values as follows: 

We describe how to transform an algorithm graph into the actual algorithm. Suppose for example that the request 

sequence is CL. Assume the algorithm is in state S2, and suppose that the next request is C. The state transition 

from S2 to S3 occurs. Suppose that S2 has configuration-probability pairs (C1, q1), (C2, q2), and (C3, q3) (C1 = (L, 

C), C2 = (L, R) and C3 = (C, R)) and S3 has (C1, r1), (C2, r2), and (C3, r3). We introduce variables xij (i, j = 1, 2, 3) such 

that xij is equal to the probability that the configuration before the transition is Ci and the configuration after the 

transition is Cj . Indeed, by a slight abuse of notation the xij values can be considered to be the algorithm itself. 

The xij values also allow us to calculate the cost of the algorithm as described next. 

The average cost for a transition is given by cost = Σ3𝑖=1Σi=13 Σ3𝑗=1Σj=13 xijd(Ci, Cj), where d(Ci, Cj) is the cost to 

change the configuration from Ci to Cj. We can select the values of xij in such a way that they minimize the above cost 

under the condition that Σ3𝑗=1Σj=13 xij = qi, Σ3𝑖=1Σi=13 xij = rj. In the case of three points on the line, it is 

straightforward to solve this linear program in general. If the servers are on L and C and the request is R, then a greedy 

move (C → R) is optimal. If the servers are on L and R and the request is C, then the optimal probability is just a 

proportional distribution due to d(L, C) and d(C, R). The xij values also show the actual moves of the servers. For 
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example, if the servers are on L and R in S2, we move a server in L to C with probability x23/q2 and R to C with 

probability x21/q2. 

 

 
Figure 4. State diagram of the algorithm 

 

Figure 5. Covering Ω 

 

The issue is how to generate those squares efficiently. Note that g(X) decreases if the size d of the square X decreases. 

Specifically, we can subdivide each square into squares of smaller size to obtain an improved competitive ratio. 

However, it is not the best policy to subdivide all squares evenly since g(X) for a square X of the same size 

substantially differs in different positions within Ω. Note this phenomenon especially between positions close to the 
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origin (i.e., both a and b are small) and those far from the origin (the former is larger). Thus our approach is to 

subdivide squares X dynamically, or to divide the one with the largest g(X) value in each step. 

We give now an informal description of the procedure for generating the squares, the formal description is given in 

Procedures 1 and 2. Broadly speaking one starts with square near the origin, then subdivides this square, and continues 

by creating a new square to the right. Due to Lemma 1 this process is bounded. The procedure begins with a single 

square [2, 3; 2]. Note that its g-value is poor (in fact, not bounded). Next, square [2, 3; 2] is split into four squares of 

size 1 as shown in Fig. 6: [1, 3; 1], [1, 2; 1], [2, 2; 1] and [2, 3; 1]. For each of these squares, the g-value is then 

calculated in the following way: If the square is of the form [i, i + 1; ℓ] for some i, ℓ, the g-value can be calculated 

imme- diately by Lemma 1. Otherwise, we use the linear program described in [14] to determine the competitive ratio 

of triangle ∆(1, a, b). Note that this linear program makes use of state graphs similar to those in Fig. 3 and Fig. 4. 

Next, square [3, 4; 2] of size 2 is added. In general, if the procedure divides [i, i + 1; 2] of size 2 and [i + 1, i + 2; 2] 

of size 2 does not exist, then square [i + 1, i + 2; 2] is added. Thus at this stage there are four squares of size 1 (two of 

these are, in fact, outside Ω) and one square of size 2. The procedure further divides that square (inside Ω) 

whose g value is the worst. One continues in this way and takes the worst g-value as an upper bound of the competitive 

ratio. 

4.Conclusion 

There are at least two promising directions for future research in the context of the 2-server 3-point problem and 

beyond. The first direction involves refining and tightening the competitive ratio bound. Specifically, it would be 

valuable to prove that the competitive ratio of the 2-server 3-point problem is analytically bounded by e / (e − 1) + ε, 

where ε represents a small positive value that can be made arbitrarily small. This bound, which is slightly above the 

well-known deterministic lower bound of 2, could offer a more precise characterization of the algorithm's expected 

performance. Achieving this would represent a significant advancement in the understanding of randomized online 

algorithms for server problems, improving the approximation of competitive ratios and making the theoretical 

framework more robust. The second avenue for future research involves generalizing the current approach of 

approximating infinite point locations by finite ones, which has been effective for the 2-server 3-point case, to 

scenarios involving four or more points. The current work has made some progress in this area, particularly in the 

case where two of the four points are close to each other. In this scenario, the problem exhibits similarities to the 3-

point case, which allows for some degree of approximation and potentially similar techniques to be applied. However, 

extending this approach to handle four or more points in a general setting presents a significant challenge. The problem 

becomes much more complex due to the increased number of points and the interactions between them, making the 

development of efficient algorithms and tight competitive ratio bounds more difficult. Further research is needed to 

find generalizable methods or novel techniques that can handle these more complex cases while maintaining the same 

level of efficiency and performance. 

These two directions—improving the competitive ratio bound and extending the approach to more points—will be 

crucial for advancing the theory and practice of randomized online algorithms for k-server problems. As such, they 

promise to open up new areas of exploration and contribute significantly to the broader field of online algorithm 

design and analysis. 
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